Algebraically closed real geodesics on n - dimensional ellipsoids are dense in the parameter space and related to hyperelliptic tangential coverings ∗
نویسنده
چکیده
The closedness condition for real geodesics on n–dimensional ellipsoids is in general transcendental in the parameters (semiaxes of the ellipsoid and constants of motion). We show that it is algebraic in the parameters if and only if both the real and the imaginary geodesics are closed and we characterize such double–periodicity condition via real hyperelliptic tangential coverings. We prove the density of algebraically closed geodesics on n–dimensional ellipsoids with respect to the natural topology in the 2n–dimensional real parameter space. In particular, the approximating sequence of algebraic closed geodesics on the approximated ellipsoids may be chosen so to share the same values of the length and of the real period vector as the limiting closed geodesic on the limiting ellipsoid. Finally, for real doubly–periodic geodesics on triaxial ellipsoids, we show how to evaluate algebraically the period mapping and we present some explicit examples of families of algebraically closed geodesics.
منابع مشابه
ar X iv : 0 70 5 . 21 12 v 1 [ nl in . S I ] 1 5 M ay 2 00 7 Density of real closed geodesics on ellipsoids related to
We prove that any real doubly periodic geodesic on an n dimensional ellipsoid with distinct semiaxes and caustic parameters is uniquely associated to a real hyperelliptic tangential cover and that the following density property holds: given a real closed geodesic on the ellipsoid Q = {X2 1/a1 + · · ·+X2 n+1/an+1 = 1} with caustic parameters cj, j = 1, . . . , n − 1, for any ǫ > 0 there exist (a...
متن کاملAlgebraic Closed Geodesics on a Triaxial Ellipsoid *
We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid Q that are cut out by algebraic surfaces in R. Such geodesics are either connected components of spatial elliptic curves or of rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves, the addition...
متن کامل2 9 Ju n 20 05 Algebraic Closed Geodesics on a Triaxial Ellipsoid ∗
We propose a simple method of explicit description of families of closed geodesics on a triaxial ellipsoid Q that are cut out by algebraic surfaces in R. Such geodesics are either connected components of spatial elliptic curves or rational curves. Our approach is based on elements of the Weierstrass–Poncaré reduction theory for hyperelliptic tangential covers of elliptic curves and the addition...
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کاملOn the variety parametrizing completely decomposable polynomials
The purpose of this paper is to relate the variety parameterizing completely decomposable homogeneous polynomials of degree d in n+1 variables on an algebraically closed field, called Splitd(P ), with the Grassmannian of n−1 dimensional projective subspaces of P. We compute the dimension of some secant varieties to Splitd(P ) and find a counterexample to a conjecture that wanted its dimension r...
متن کامل